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Transient electrophoretic motion of a
charged particle through a
converging–diverging microchannel: Effect
of direct current-dielectrophoretic force

Transient electrophoretic motion of a charged particle through a converging–diverging

microchannel is studied by solving the coupled system of the Navier–Stokes equations

for fluid flow and the Laplace equation for electrical field with an arbitrary Lagrangia-

n–Eulerian finite-element method. A spatially non-uniform electric field is induced in the

converging–diverging section, which gives rise to a direct current dielectrophoretic (DEP)

force in addition to the electrostatic force acting on the charged particle. As a sequence,

the symmetry of the particle velocity and trajectory with respect to the throat is

broken. We demonstrate that the predicted particle trajectory shifts due to DEP show

quantitative agreements with the existing experimental data. Although converging–

diverging microchannels can be used for super fast electrophoresis due to the

enhancement of the local electric field, it is shown that large particles may be blocked due

to the induced DEP force, which thus must be taken into account in the study of

electrophoresis in microfluidic devices where non-uniform electric fields are present.
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1 Introduction

Electrophoresis has been widely used to characterize,

separate, and purify colloids, and to manipulate biological

entities such as cells and DNAs in microfluidic as well as

many other lab-on-a-chip applications [1, 2]. Numerous

studies have thus been performed on the electrophoretic

motion of rigid particles in unbounded and confined

aqueous electrolyte solutions, as discussed in a recent

review by Unni et al. [3].

Electrophoresis in converging–diverging microchannels

has recently attracted a considerable attention due to its

promising applications in super fast electrophoresis [4],

sizing and sorting DNA molecules [5], separating beads and

biological cells [6–12], focusing particle flows [13], and

stretching deformable biological entities, such as individual

DNA molecules for genomic analysis [14, 15]. Electric field

becomes highly non-uniform in a converging–diverging

microchannel, especially when the particle is passing the

throat of the converging–diverging section where the cross-

sectional area is the minimum. The non-uniform electric

field affects the electrostatic force acting on both the particle

and the fluid, resulting in significantly different particle

motions. In addition, the particle experiences the direct

current (DC) dielectrophoretic (DEP) force arising from the

interaction between the dielectric particle and the spatially

non-uniform electric field. Even in a uniform microchannel,

the presence of a particle with a size comparable to the

channel cross-section may significantly distort the electric

field, yielding a non-trivial DEP force on the particle. For

example, Young and Li [16] recently demonstrated that

when the gap between a sphere and a channel wall is

comparable to the sphere radius, the DEP force should be

taken into account when studying the particle motion.

However, in most previous numerical studies of particle

electrophoresis in non-uniform channels, such as T-shaped

[17] and L-shaped microchannels [18], a converging–diver-

ging nanotube [19], and a nanopore connecting two micro-

reservoirs on each side [20], the effects of DEP force have

been ignored.

Depending on the electric field and the channel geome-

try, the induced DEP force may become comparable or even

larger than other forces involved, such as electrostatic and

hydrodynamic forces, and thus significantly alters the

particle electrophoresis. This has been demonstrated through

experiments [6–8, 10–13]. In addition, a numerical model

based on the Lagrangian tracking method has been developed
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to understand the DEP effects on particle electrophoresis in

microchannels [12]. However, the effects of the particle on the

fluid flow and electric fields are both neglected in this model,

so is the particle rotation [12]. Instead, a correction factor has

to be introduced to account for the particle size effects on the

DEP force, and is determined by fitting the numerical

predictions to the experimental data.

In the present study, transient electrophoretic motion of

a charged particle through a converging–diverging micro-

channel is numerically investigated for the first time with a

full consideration of the particle–fluid–electric field inter-

actions. The induced DEP force is obtained by directly

integrating the Maxwell stress tensor over the particle

surface without making any assumptions. The structure of

this paper is as follows: Section 2 introduces the mathe-

matical model composed of the Navier–Stokes equations for

flow field and the Laplace equation for electric field defined

in the ALE kinematics. Section 3 describes the numerical

method and code validation by comparing the present

numerical predictions with a few special cases reported in

the literature. The computational results are discussed in

Section 4 with focuses on the effect of the DC DEP force,

and concluding remarks are given in the ensuing section.

2 Mathematical model

Figure 1A schematically illustrates a charged circular particle

of diameter d in a converging–diverging microchannel, which

is based on the fabricated device used in the experiment of

Xuan et al. [8], shown in Fig. 1B. A 2-D Cartesian coordinate

system (x, y), with the origin at the center of the throat, is

used as shown. The computational domain O is surrounded

by the channel boundary ABCDEFGHIJ and the particle

surface G. The segments AJ and EF are, respectively, the inlet

and outlet, between which an electric potential difference is

applied. The segments ABCDE and FGHIJ are microchannel

walls with a uniform zeta potential zw. The particle, with a

uniform zeta potential zp on its outer surface G, is initially

located in the upstream uniform section with a center-to-

center distance h off the centerline of the channel. The

converging–diverging section is considered to be symmetric

with respect to the throat with Lb 5 Lc. The widths of the

uniform section and the throat are, respectively, a and b. The

length of the upstream uniform section is long enough to

ensure a fully developed particle motion prior to the

acceleration in the converging section. The particle and

microchannel walls are assumed to be rigid and non-

conducting. The fluid in the computational domain O is

incompressible and Newtonian. The effects of Brownian

motion and gravity are both ignored.

Compared with the micro-scale channel and particle

considered, the electrical double layer (EDL), formed adja-

cent to the charged surface of particle and channel wall with

a typical thickness ranging from 0.1 to 10 nm, is so thin that

will not be resolved in detail. Commonly, it will be instead

approximated by the Smoluckowski electroosmotic slip

velocity [17, 18]. In the framework of the thin EDL approx-

imation, the particle and its adjacent EDL are considered as

a single entity, and the fluid motion outside the EDL is

described by the Stokes equations without any electrostatic

body forces. The conservation of mass and momentum in

the fluid are thus expressed as

H � u ¼ 0 in O; ð1Þ

and

r
@u
@t
¼ �Hpþ mH2u in O; ð2Þ

where u is the fluid velocity vector, p is the pressure, r and m
are, respectively, the fluid density and dynamic viscosity.

Since the Reynolds number of electrokinetic flows is usually

very small, the inertial terms in the Navier–Stokes equations

are neglected.

All the electrokinetic effects induced by the surface

charges are incorporated in the Smoluckowski slip velocity

boundary conditions. Hence, the fluid velocity adjacent to

the channel wall is

u ¼ ee0zw

m
ðI� nnÞ � Hf on ABCDE and FGHIJ; ð3Þ

where e and e0 are, respectively, the relative permittivity of

the fluid and the permittivity of vacuum, I is the second-

order unit tensor, n is the unit normal vector pointing from

the channel wall to the fluid domain, and f is the electric
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Figure 1. (A) A 2-D schematic view of a circular particle of
diameter d and zeta potential zp migrating in a converging–
diverging microchannel. The zeta potential zp of the channel wall
is zw. An axial electric field, E, is externally applied between the
outlet and inlet of the channel; (B) Photograph of a converging–
diverging microchannel fabricated with PDMS. The inset shows
the converging–diverging section of the microchannel [8].
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potential in the fluid domain. The quantity ðI� nnÞ � Hf
defines the electric field tangent to the charged channel wall.

Since the particle translates and rotates simultaneously,

the boundary condition on the particle surface not only

contains the electroosmotic slip velocity but also the transla-

tional and rotational velocities of the particle, and is written as

u ¼ Up þ xp � ðxs � xpÞ þ
ee0zp

m
ðI� nnÞ � Hf on G; ð4Þ

where Up, xp, xs, and xp are, respectively, the translational

velocity, the rotational velocity, the position vector of the

particle surface, and the position vector of the particle center.

No pressure gradient is imposed between the inlet AJ and

outlet EF.

Due to the assumption of infinitesimal EDL, the net

charge density in the computational domain O is zero, and

so the electrical potential satisfies the Laplace equation

H2f ¼ 0 in O: ð5Þ

All rigid surfaces are then electrically insulating,

n � Hf ¼ 0 on ABCDE; FGHIJ; and G; ð6Þ

and the potential difference f0 applied between the inlet

and outlet is imposed by

f ¼ f0 on EF ð7Þ

and

f ¼ 0 on AJ: ð8Þ

The translational velocity of the particle is governed by

the Newton’s second law

mp
dUp

dt
¼ F; ð9Þ

where mp is the mass of the particle and F is the net force

acting on it. Since the electrostatic and the hydrodynamic

force due to the flow field within the EDL adjacent to the

charged particle has the same value but directed in the

opposite directions [17], the net force F is the superposition

of the hydrodynamic force, FH, due to the flow field origi-

nated in the outer region of the EDL, and the DC DEP force,

FDEP, arising from the interaction between the dielectric

particle and the spatially non-uniform electric field:

F ¼ FH þ FDEP: ð10Þ

Here FH and FDEP are obtained, respectively, by integrating

the hydrodynamic stress tensor TH and the Maxwell stress

tensor TE over the particle surface:

FH ¼
Z

TH � ndG ¼
Z
½�pIþ mðHuþ HuTÞ� � ndG ð11Þ

and

FDEP ¼
Z

TE � ndG

¼
Z

ee0EE� 1

2
ee0ðE � EÞI

� �
� ndG; ð12Þ

where E is electric field related to the electric potential by

E ¼ �Hf. The integration of the first term of the integrand

in the right-hand-side of Eq. (12) vanishes due to

Eq. (6).

The rotational velocity of the particle is determined by

Ip
dxp

dt
¼ Q

¼
Z
ðxs � xpÞ � ðTH � nÞdGþ

Z
ðxs � xpÞ

� ðTE � nÞdG; ð13Þ

where Ip is the moment of inertial of the particle and Q is

the torque exerted on the particle.

The center xp and the orientation hp of the particle are

expressed by

xp ¼ xp0 þ
Z t

0

Updt ð14Þ

and

hp ¼ hp0 þ
Z t

0

xpdt; ð15Þ

where xp0 and hp0 denote, respectively, the initial location

and orientation of the particle.

3 Numerical method and code validation

Initially, the fluid velocity and particle velocity are zero, and

the particle is positioned in the upstream far away from the

converging–diverging section to ensure a steady particle

motion prior to arriving at the converging section. The

arbitrary Lagrangian–Eulerian (ALE) algorithm, in particu-

lar for the simulation of fluid–particle interactions [21, 22],

is implemented to track the particle motion in a Lagrangian

fashion and at the same time solve the fluid flow and the

electric field in an Eulerian framework. Using Eqs. (14) and

(15), the ALE algorithm updates the location and the

orientation of the particle with deformable mesh after each

computational time step. As the particle translates and

rotates, the mesh deforms gradually until the mesh quality

degrades to a designated level, at which time the integration

is forced to stop. Subsequently, the preceding deformed

mesh is used to create a new geometry, upon which a new

mesh is generated to continue the computation until the

next mesh degradation. The ALE algorithm thus can

precisely track the whole trajectory of the particle moving

through the converging–diverging microchannel.

The coupled system described above is simultaneously

solved with a commercial finite-element package COMSOL

(version 3.4a, www.comsol.com) operating in a high-perfor-

mance cluster. The computational domain O in Fig. 1A is

discretized into quadratic triangular elements with a higher

density around the particle and in the channel throat region.

We also verified that for the conditions studied here, the

numerical solutions are convergent, independent of the size

of the elements, and satisfy the various conservation laws.

In order to validate the present computational method

and the treatment of the DEP force, we make comparisons
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with existing analytical and experimental results of electro-

phoresis in channels with a simple geometry. Figure 2

shows the dimensionless DEP force on a dielectric sphere of

radius, r, near a planar wall as a function of the dimen-

sionless gap size, d� ¼ ðdp � rÞ=r, where dp is the distance

from the particle center to the planar wall. The DEP force is

normalized by ee0E2
N

r2=2, where EN is the external electric

field applied far away from the spherical particle and parallel

to the planar wall. Our numerical results (circles) are in

good agreement with the N analytical results (solid line)

obtained by Young and Li [16].

Figure 3 shows the electrophoretic velocity of a charged

spherical particle of diameter d translating along the axis of

an infinitely long tube of diameter a. The approximate

solution, valid for thin EDL and absence of DEP force,

U�p ¼ 1� 1:28987
d

a

� �3

þ1:89632
d

a

� �5

�1:02780
d

a

� �6

þ O
d

a

� �8
 !" #

ð1� gÞ;

ð16Þ

was derived by Keh and Anderson [23], where g ¼ zw=zp

denotes the ratio of the zeta potential zp of the particle to

that of the channel wall. The translational velocity of the

particle is normalized by ee0zpEz=m with Ez representing

the electric field along the axis of the tube in the absence of

the particle. The present numerical results (circles) show

good agreement with the approximate solution (solid line),

in which the DEP force does not affect the particle motion

due to axial symmetry.

Another validation of the present method is performed

for the electrophoretic motion of a charged circular particle

in a straight microchannel with a rectangular hurdle in the

middle, as shown in Fig. 4. The present numerical results

are compared against the experimental data obtained by

Kang et al. [12]. As in the converging–diverging micro-

channel, a spatially non-uniform electric field is induced by

the hurdle, and DC DEP force is generated. The experi-

ments demonstrate that the trajectory of particles close to

the lower wall is strongly asymmetric with respect to the

hurdle, resulting in conspicuous shift toward the upper wall

after passing the hurdle. For two 15.7 mm particles under a

20 kV/m electric field shown, our numerical predictions

(solid and dashed lines) are in good agreement with the

experimental data (symbols). If the DEP force were neglec-

ted, the predicted particle trajectory (dotted line) would be

symmetric with respect to the hurdle, with substantial

discrepancy with the experimental data. It can be concluded

that the trajectory shift is attributed to the DEP force, which

must be taken into account for the electrophoretic motion of

particles in microchannels with non-uniform cross-sections,

such as converging–diverging microchannels, where the

electric field is non-uniform.

101

100

10-1

10-1 100 101

10-2

10-2

10-3

10-4

δ*

F de
p

*

Figure 2. Dimensionless DEP force exerting on a sphere near a
planar wall as a function of the dimensionless gap size. The solid
line and circles represent, respectively, the analytical solution by
Young and Li [16] and our numerical results obtained by a 3-D
model.
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Figure 3. Dimensionless translational velocity of a sphere
moving along the axis of a tube as a function of the ratio
between the diameter of the sphere and that of the tube. The
solid line and circles represent, respectively, the approximation
solution from Keh and Anderson [23] and our 3-D numerical
results obtained by an axisymmetric model.
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Figure 4. Particle trajectories through a microchannel with a
rectangular hurdle in the middle. The solid and dashed lines
represent the predicted particle trajectories with considering the
DEP force, the circles, and squares represent the experimental
data obtained by Kang et al. [12], and the dotted line represents
the predicted particle trajectory of the lower particle without
considering the DEP force. The x and y locations are both
normalized by the channel width.
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4 Results and discussion

Using the computational method developed, a comprehen-

sive parametric study has been performed to understand the

DEP force in a converging–diverging microchannel. In this

section, discussions on a few representative cases are

provided in dimensional terms with focus on the effects of

the electric field and particle size on the particle velocity and

trajectory. The lengths of the symmetric converging–diver-

ging section are taken from the fabricated device of Xuan

et al. [8] with Lb 5 Lc 5 400 mm, whereas that of the entire

microchannel is set to 1500 mm, with La 5 400 mm and

Ld 5 300 mm. The widths of the uniform section and throat

are, respectively, a 5 325 mm and b 5 55 mm. The applied

electric field strength E is calculated by dividing the electric

potential difference between the inlet and outlet over the

total length of the microchannel. The initial transverse

location of the particle is defined as the ratio of the initial

distance between the particle center and the channel

centerline to the half width of the straight section,

h�5 2h/a.

4.1 Trajectory shift

Figure 5A shows the predicted particle trajectories through a

converging–diverging microchannel in the presence (solid

and dashed lines) and absence (circles and squares) of the

DEP force when E 5 10 KV/m, d 5 20 mm, zp 5 58 mV, and

g5 0.3. The solid line (or circles) and dashed line (or

squares) correspond, respectively, to h�5�0.5 and h�5 0.7.

It is clearly seen that the particle trajectory becomes

asymmetric with respect to the channel throat when the

DEP force is considered. After passing through the throat,

particles are pushed toward the centerline of the channel,

which will be explained below. In Fig. 5B the predicted

particle trajectories are compared with the experimental

results (symbols) when E 5 15 KV/m, d 5 10.35 mm,

zp 5�32 mV, and g5 2.5. Note that the particle size in

Fig. 5B is smaller than that in Fig. 5A. Since the DEP force

is proportional to the particle size, the particle in Fig. 5B

experiences a slighter trajectory shift than that in Fig. 5A

due to a smaller induced DEP force. The size-dependent

separation demonstrated in [6, 7, 10–12, 24] is based on the

idea that particles with different sizes experience different

trajectory shifts due to the particle-size-dependence of the

DEP force.

Figure 6 shows the distribution of the DEP force near

the throat obtained by a point-dipole approximation [25]

without considering the effect of the particle on the electric

field. The color levels in Fig. 6 represent the dimensionless

electric field strength, which is normalized by 2f0=d. As the

particle experiences a negative dielectrophoresis, the DEP

force acting on the particle always points to the region of a

lower electric field. Since the maximum electric field

strength occurs at the throat, the DEP force is directed away

from it, as shown in Fig. 6. The trajectory (a) shown in Fig. 6

represents the predicted particle trajectory without consid-

ering the DEP force, which is identical to the streamline of

the flow field originated from the initial location of the

particle. The x-component of the DEP force is negative in

the converging section and becomes positive in the diver-

ging section. The y-component DEP force is negative

(positive) in the region above (below) the centerline of the
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Figure 5. (a) Predicted particle trajectories with (solid and
dashed lines) and without (circles and squares) considering the
DEP force. E 5 10 KV/m, d 5 20 mm, zp 5 58 mV, a 5 325 mm,
b 5 55 mm, and g5 0.3. (b) Predicted particle trajectories with
considering the DEP force (solid and dashed lines) compared
with the experimental data (circles and squares). E 5 15 KV/m,
d 5 10.35 mm, zp 5�32 mV, a 5 325 mm, b 5 55 mm, and g5 2.5.

Figure 6. Distribution of the DEP force (arrows) around the
throat of the converging–diverging microchannel. The color
levels represent the normalized electric field strength. The
trajectories (a) and (b) represent, respectively, the predicted
particle trajectories without and with considering the DEP force.
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microchannel. Away from the converging–diverging section,

the DEP force gradually decays, and becomes negligible in

the uniform section of the channel. When a particle is

initially located above the centerline and electrophoretically

migrates to the converging section, the particle experiences

negative x-component and y-component DEP forces, which

push the particle toward the centerline of the channel. After

it passes the throat, the x-component DEP force becomes

positive, whereas the y-component DEP force is still nega-

tive. The positive x-component DEP force accelerates the

translation of the particle, whereas the negative y-compo-

nent DEP force continues to push the particle toward the

centerline of the channel. Particles transported along the

centerline of the channel would not experience the trajectory

shift.

4.2 Effect of electric field

Several different electric fields are applied to drive the

electrophoretic motion of a 20-mm particle moving along the

centerline of the converging–diverging microchannel with

zp 5�32 mV, and g5 2.5. Figure 7A shows the ratio of the

translational velocity of the particle to that in the uniform

upstream section, lp ¼ Up=Uup, under the electric field of

10 KV/m (solid line), 20 KV/m (dotted line), and 35 KV/m

(dash–dotted line), respectively. For comparison, the trans-

lational velocity ratio without considering the DEP force is

also shown in Fig. 7A (dashed line), which as expected is

symmetry with respect to the throat and independence of

the electric field. When the DEP force is taken into account,

however, the translational velocity ratio is asymmetric with

respect to the throat and strongly dependent of the electric

field applied. This is because that the x-component DEP

force is negative in the converging section, whereas positive

in the diverging section, as shown in Fig. 6.

To clearly explain the asymmetric velocity ratio profile

and its dependence of the electric field, we analyze the

electrophoretic and DEP forces acting on a particle along the

centerline of the channel. For the electrophoretic motion of

a sphere with a radius of 10 mm and density of 1000 kg/m3,

the characteristic time for reaching a steady translational

velocity is in the order of 10�4 s. The variation of the parti-

cle’s translational velocity generally follows a similar trend

of the electrokinetic force exerted on the particle [12]. Due to

the thin EDL approximation, the electrophoretic force is not

explicitly solved in the present model. We instead estimate

the dimensional electrophoretic force acting on a sphere of

radius r as [26]

FEP ¼ ðg� 1Þ6pzpee0rE: ð17Þ

The dimensional DEP force acting on the particle is given by

Eq. (12), which reveals the quadratic dependence of the DEP

force on the electric field, in contrast to the linear depen-

dence of the electrophoretic force. For high electric fields the

DEP force can dominate. Figure 8 shows the normalized

electrophoretic force (dash–dotted line), DEP force (dashed

line) and superposition of the two forces (solid line) acting

on the particle along the centerline of the channel under an

electric field of 15 KV/m. The forces are normalized by

ee0zpf0. The electrophoretic force is symmetric about the

throat with the maximum occurring at the throat. The DEP

force is insignificant in the uniform sections, but becomes

important near the throat. As the negative DEP force always

points to the region of a lower electric field, the direction of

the DEP force in the upstream is opposite to that in the

downstream, as is also shown in Fig. 6, which retards the

particle motion in the converging section but accelerates it

in the diverging section. The translational velocity ratio in

the converging section is lower than that in the absence of
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Figure 7. (A) Translational velocity ratio of a 20-mm particle
along the centerline of the converging–diverging microchannel.
zp 5�32 mV, a 5 325 mm, b 5 55 mm, and g5 2.5. The solid,
dotted, and dash–dotted lines represent, respectively, the
velocity ratio under an electric field of E 5 10, 20, and 35 KV/m
with considering the DEP force. The symmetric dashed line
represents the velocity ratio without considering the DEP force.
(B) The velocity ratio under an electric field of 15 KV/m. The solid
line, dashed line (symmetric), and circles represent, respectively,
the numerical prediction with considering the DEP force,
numerical prediction without considering the DEP force, and
the experimental data obtained by Xuan et al. [8].
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the DEP force, as shown in Fig. 7A. However, the transla-

tional velocity ratio in the diverging section is higher than

that with no DEP force. When the particle is located exactly

at the center of the throat, the surrounding electric field is

symmetric with respect to the particle center, and so the net

DEP force vanishes. Thus, the translational velocity ratio at

the throat predicted either with considering the DEP force or

not is the same. The maximum translational velocity ratio

occurs in the diverging section where the DEP force (dashed

line in Fig. 8) and thus the superposition of the electrostatic

and DEP forces (solid line) reaches a maximum. Although

the cross-sectional area ratio of the uniform section to the

throat is 5.91, the maximum translational velocity ratio with

the DEP force can easily exceed this value. When the electric

field is above a critical value, the negative x-component DEP

force in the converging section becomes large enough to

prevent the particle from passing the throat (dash–dotted

line in Fig. 7A), which is also observed experimentally by

Kang et al. [12].

Figure 7B shows the comparison of the numerically

predicted translational velocity ratios (lines) with the

experimental data (symbols) obtained by Xuan et al. [8]

under an electric field of 15 KV/m. The solid and dashed

lines represent, respectively, the predictions with and with-

out the DEP force. In the converging section, the numerical

results with the DEP force (solid line) are in good agreement

with the experimental data. However, considerable

disagreement is seen in the diverging section. The experi-

mental data seem almost symmetric, and do not show the

peak just after the throat. The main reason that a clear DEP

effect on the velocity ratio was not observed in the experi-

ments appears to be difficulties in the measurement.

Particles move fast near the channel throat while the camera

used can take images at only 15 frames per second, resulting

in at most a couple of data points for each particle in the

throat region. With these few data, it is hard to tell whether

the particle velocity ratio is symmetric or asymmetric about

the channel throat from the experimental data alone. Only

when the DEP effect is strong enough, which is not the case

in the experimental conditions used, the asymmetric profile

can be clearly observed.

Figure 9 shows the particle trajectory shift due to the

DEP force under four different electric fields when

d 5 20 mm, h�5 0.5, zp 5 58 mV, and g5 0.3. A higher

electric field leads to a larger trajectory shift. In the case of

E 5 25 KV/m, the particle is shifted to the centerline of the

channel after passing the throat. It is thus noted that the

converging–diverging channels can be used for particle

focusing, which has been observed experimentally by Xuan

et al. [27] and also successfully implemented by Thwar et al.
[13] in a straight channel with a pair of oil menisci.

4.3 Effect of particle size

Figure 10 shows the translational velocity ratio of particles

with different sizes along the centerline of the channel when

zp 5 58 mV and g5 0.3. As discussed above, the DEP force

exerted on a spherical particle varies with the cubic of its

radius. Therefore, the DEP force diminishes fairly rapidly

with the decrease in particle size. For example, the

translational velocity ratios for a 10-mm particle with (solid

line) and without (dashed line) the DEP force are very close,

as shown in Fig. 10. As the particle size increases to 25 mm,

the resulting DEP force becomes large enough to establish a

clearly asymmetric particle motion with respect to the throat

(dotted line). For even larger particles, the DEP force can

prevent the particle from passing through the throat, which

indicates that the converging–diverging microchannels may

be used for particle trapping and sorting.
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Figure 8. Normalized electrokinetic forces acting on a 20-mm
particle under an electric field of 15 KV/m. Dashed, dash–dotted,
and solid lines represent, respectively, the DEP force, electro-
phoretic force, and the superposed electrokinetic force.
zp 5�32 mV, a 5 325 mm, b 5 55 mm, and g5 2.5.
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Figure 9. Particle trajectories of a 20-mm particle initially located
at h�5 0.5 under electric fields of E 5 10 KV/m (dash–dotted line),
E 5 15 KV/m (solid line), E 5 20 KV/m (dotted line), and E 5 25 KV/
m (dashed line). zp 5 58 mV, a 5 325 mm, b 5 55 mm, and g5 0.3.

Electrophoresis 2009, 30, 2499–2506 Microfluidics and Miniaturization 2505

& 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.electrophoresis-journal.com



5 Concluding remarks

The effect of DEP force, arising from a non-uniform electric

field, on the electrophoretic motion of particles through a

converging–diverging microchannel is numerically investi-

gated for the first time using a transient ALE finite element

model. We demonstrate that the particle velocity along the

converging–diverging microchannel, which is symmetric

with respect to the throat when the DEP effect is neglected,

becomes asymmetric due to the opposite directions

of the DEP forces induced in the converging and diverging

sections. For larger particles or electric fields, the DEP

force may be strong enough to prevent the particles

from passing through the microchannel, which may be

used for particle trapping and sorting. Particles initially

located away from the centerline of the channel experience

trajectory shift toward the centerline in the downstream,

which is in good agreement with existing experimental data

and shows applicability to particle focusing. As particles

with different sizes experience different trajectory shifts,

converging–diverging microchannels have a great potential

for continuous separation of biological entities like cells and

DNAs, which has been demonstrated in several experi-

mental works.
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Figure 10. Translational velocity ratio of particles with diameter
d 5 10 mm (solid line), d 5 25 mm (dotted line), and d 5 40 mm
(dash–dotted line) along the centerline of the converging–diver-
ging microchannel under an electric field of 10 KV/m. The
symmetric dashed line represents the predicted velocity ratio
of a 20 mm particle without considering the DEP force.
zp 5 58 mV, a 5 325 mm, b 5 55 mm, and g5 0.3.
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